## ZUM THERMISCHEN VERHALTEN VON ALKYLAMMONIUM-UND KALIUM-N-ALKYLTHIOCARBAMATEN

W. MÜLLER-LITZ und M. MORTAG

Padagogische Hochschule »Dr. Theodor Neubauer« Erfurt-Mühlhausen, Hochschulbereich Mühlhausen, Sektion Chemie/Biologie, D. D. R.

(Eingegangen am 5. März, 1979)

The thermal behaviours of alkylammonium and potassium N-alkylthiocarbamates of general formula (RNH<sub>3</sub>) (RHNCXY) (where X = Y = S or X = S and Y = 0;  $R = n-C_3H_7$ ,  $i-C_3H_7$ ,  $n-C_4H_8$ ,  $i-C_4H_9$  or  $c-C_6H_{11}$ ) and K(RHNCOS) (where  $R = CH_3$ ,  $C_2H_5$ ,  $n-C_3H_7$ ,  $i-C_3H_7$ ,  $n-C_4H_8$ ,  $i-C_4H_9$  or  $c-C_6H_{11}$ ) were investigated. The decomposition mechanisms exhibit a similar character for all studied compounds. In the course of thermolysis symmetric dialkylureas and dialkylthioureas, as well as amines,  $CS_2$  (or COS) and  $H_2S$  are formed. The alkylammonium thiocarbamates decompose without any residue, whereas with potassium monothiocarbamates potassium sulfate is left as a residue. For the process of urea and thiourea formation during the first step of decomposition, the activation energies were computed for some compounds.

Ammonium- bzw. Alkylammonium-N-alkylmono- und -dithiocarbamate zersetzen sich thermisch zu N,N'-Dialkylharn- bzw. -thioharnstoffen [z. B. 1-4]. Eine genauere Untersuchung der Zersetzungsmechanismen sowie deren Quantifizierung wurde nach unserer Kenntnis bisher nicht vorgenommen.

Wir unterzogen eine Reihe von Alkylammonium-N-alkylthiocarbamaten (RNH<sub>3</sub>) (RHNCXY) (mit X=Y=S und X=S, Y=O; R = n-C<sub>3</sub>H<sub>7</sub>, *i*-C<sub>3</sub>H<sub>7</sub>, *n*-C<sub>4</sub>H<sub>9</sub>,*i*-C<sub>4</sub>H<sub>9</sub>,*c*-C<sub>6</sub>H<sub>11</sub>) und Kalium-N-alkylmonothiocarbamaten (KRHNCOS) (mit R=CH<sub>3</sub>, C<sub>2</sub>H<sub>5</sub>, *n*-C<sub>3</sub>H<sub>7</sub>, *i*-C<sub>3</sub>H<sub>7</sub>, *n*-C<sub>4</sub>H<sub>9</sub>,*i*-C<sub>4</sub>H<sub>9</sub>, *c*-C<sub>6</sub>H<sub>11</sub>) (Darstellung und Eigenschaften dieser Verbindungen vgl. [5–7]) einer systematischen thermischen Untersuchung mit dem Derivatographen Typ 3427, System Paulik–Paulik–Erdey, der Firma MOM-Budapest in Luftatmosphäre. Die Meßbedingungen waren: Masse der Proben: 200–300 mg in Thermokeramiktiegel, Inertprobe:  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> Temperaturprogramm: 5°/500° bzw. 10°/1000° in statischer Luftatmosphäre.

In der Tabelle 1 sind die TG- und DTG-Ergebnisse der Unteruchungen an Alkylammonium-N-alkylmono- und -dithiocarbamaten zusammengestellt. Der thermische Abbau erfolgt in zwei deutlich erkennbaren endothermen Stufen (I und III in Tab. 1, Abb. 1). Als Abbauprodukte verbleiben nach der ersten Stufe N,N'-Dialkylharn- bzw. -thioharnstoffe:

$$X=Y=S$$
;  $X=S$  und  $Y=O$ .

## Tabelle 1

TG- und DTG-Daten der Verbindungen (RNH<sub>3</sub>)(RHNCXY) (in Luft)

| Verbindung                                                  | $\Delta T, ^{\circ}C^{a}$ | $T_{\max}/^{\circ}\mathbf{C}^{\mathbf{b}}$ | ∆m, %c                                  |  |  |
|-------------------------------------------------------------|---------------------------|--------------------------------------------|-----------------------------------------|--|--|
|                                                             |                           | I                                          |                                         |  |  |
| v - v - s                                                   |                           |                                            |                                         |  |  |
| R = n - C H                                                 | 60-153                    | 132                                        | 31 95                                   |  |  |
| $K = n - C_3 H_7$                                           | 81-162                    | 132                                        | 59.36                                   |  |  |
| 1-С3117<br>n-С Н                                            | 86-165                    | 130                                        | 23 42                                   |  |  |
| и-С4119<br>i-С Н                                            | 79-162                    | 135                                        | 23.32                                   |  |  |
| $c-C_{6}H_{11}$                                             | 116-173                   | 155                                        | 20.44                                   |  |  |
| X = S, Y = O                                                |                           |                                            |                                         |  |  |
| $R = n - C_0 H_0$                                           | 60-173                    | 124                                        | 67.96                                   |  |  |
| i-C.H.                                                      | 53-187                    | 148                                        | 68.69                                   |  |  |
| n-C.H.                                                      | 70-178                    | 131                                        | 51.55                                   |  |  |
| i-C.H.                                                      | 50-150                    | 118                                        | 70.59                                   |  |  |
| $c - C_6 H_{11}$                                            | 58-160                    | 133                                        | 68.04                                   |  |  |
| <u></u>                                                     | -    <br>II               |                                            |                                         |  |  |
|                                                             |                           |                                            |                                         |  |  |
| X = Y = S                                                   |                           |                                            |                                         |  |  |
| $\mathbf{R} = n \cdot \mathbf{C}_3 \mathbf{H}_7$            | 153-220                   | 212                                        | 23.67                                   |  |  |
| $n-C_4H_9$                                                  | 165-238                   | 234                                        | 33.54                                   |  |  |
| <i>c</i> -C <sub>6</sub> H <sub>11</sub>                    | 173-228                   | 226                                        | 16.06                                   |  |  |
| X = S, Y = O                                                | 172 010                   | <b>a</b> (a)                               | 16.00                                   |  |  |
| $\mathbf{R} = n \cdot \mathbf{C}_3 \mathbf{H}_7$            | 173-248                   | 242                                        | 16.02                                   |  |  |
| $n-C_4H_9$                                                  | 1/8-230                   | 228                                        | 12.37                                   |  |  |
| <i>c</i> -C <sub>6</sub> H <sub>11</sub>                    | 160-236                   | 233                                        | 9.28                                    |  |  |
|                                                             | ш                         |                                            |                                         |  |  |
| Y Y C                                                       |                           |                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  |  |
| A = I = S                                                   | 220-282                   | 247                                        | 11 20                                   |  |  |
| $\kappa = n - C_3 \pi_7$                                    | 162 227                   | 241                                        | 44.30                                   |  |  |
| <i>г</i> -С <sub>3</sub> п <sub>7</sub>                     | 102 - 237<br>238 - 209    | 217                                        | 40.04                                   |  |  |
|                                                             | 230-308                   | 204                                        | 43.04<br>66 67                          |  |  |
|                                                             | 228 209                   | 230                                        | 60.07                                   |  |  |
| <i>c</i> -c <sub>6</sub> n <sub>11</sub>                    | 220-308                   | 230                                        | 05.5                                    |  |  |
| X = S, Y = O<br>R = r-C H                                   | 248-308                   | 270                                        | 16.02                                   |  |  |
| $\mathbf{K} = \mathbf{H} \cdot \mathbf{C}_3 \mathbf{\Pi}_7$ | 187-220                   | 270                                        | 21 21                                   |  |  |
| <i>-</i> С <sub>3</sub> П <sub>7</sub>                      | 230 200                   | 231                                        | 26 00                                   |  |  |
| <i>и</i> -С <sub>4</sub> п <sub>9</sub><br>; С Ц            | 250-500                   | 270                                        | 20.08                                   |  |  |
|                                                             | 130-2/0                   | 237                                        | 27.41                                   |  |  |
| <i>c</i> -U <sub>6</sub> H <sub>11</sub>                    | 230-280                   | 237                                        | 22.08                                   |  |  |

<sup>c</sup>Temp.-Intervall des Masseverlustes, <sup>b</sup> Temp. des DTG-Maximums, <sup>c</sup> Masseverlust.

Die Rückstände wurden eindeutig analytisch (Tab. 2) und IR-spektroskopisch (Abb. 3 und 4) als Harn- bzw. Thioharnstoffe identifiziert. Die Ausbeuten an diesen Harnstoffen liegen sämtlich sehr deutlich unter den theoretisch möglichen, so daß neben deren Bildung ein weiterer Prozeß ablaufen muß. Es gelang uns, als weitere Abbauprodukte Spuren der Amine  $RNH_2$ , der CXY-Verbindungen sowie größere Mengen der aus diesen Verbindungen reproduzierten Thiocarbamate nachzuweisen. Demzufolge läuft neben der Hauptreaktion (1) noch die thermische



Abb. 1. TG-, DTG- und DTA-Kurven von (i-C<sub>4</sub>H<sub>9</sub>NH<sub>3</sub>) (i-C<sub>4</sub>H<sub>9</sub>NHCOS)

Dissoziation der Thiocarbamate in Amin und das CXY-Molekül ab:

$$(RNH_3) (RHNCXY) \rightleftharpoons 2 RNH_2 + CXY$$
(2)

So ist auch die in Abhängigkeit von der Flüchtigkeit des Amins und der CXY Verbindung variierende Ausbeute an Harn- bzw. Thioharnstoffen leicht zu erklären. Durch Erhöhung des Druckes beim thermischen Abbau kann diese Nebenreaktion weitgehend ausgeschlossen und die Harn- bzw. Thioharnstoffausbeute beträchtlich gesteigert werden. Die letzte Abbaustufe (III in Tab. 1) erklärt sich bei allen Verbindungen aus dem quantitativen Verdampfen der in der ersten Abbaustufe gebildeten Harn- bzw. Thioharnstoffe. Es muß ferner beachtet werden, daß bei diesen Temperaturen ein Gleichgewicht zwischen den Harn- bzw. Thioharnstoffen und Isocyanat bzw. Isothiocyanat vorliegt:

$$\begin{array}{c} \text{RHN} - \text{C} - \text{NHR} \rightleftharpoons \text{RNH}_2 + \text{RNCY} \\ \parallel \\ \text{Y} \end{array} \tag{3}$$

Die letzteren sind jedoch nur in geringen Spuren nachweisbar, da sich beim Abkühlen sofort die Harnstoffe reproduzieren. Liegt der Siedepunkt der Harn- bzw. Thioharnstoffe beträchtlich über der Temperatur, bei der die erste Abbaustufe



Abb. 2. TG-, DTG- und DTA-Kurven von (n-C4H3NH3) (n-C4H6NHCS2), x: Schmelzpunkt

Tabelle 2

Analyse der Rückstände nach der ersten Abbaustufe von  $(n-C_3H_7NH_3)(n-C_3H_7NHCXY)$ und Vergleich mit den theoretischen Werten der entsprechenden Harnstoffe (in %)

| Verbindung                             | С     | н     | N     | S    |
|----------------------------------------|-------|-------|-------|------|
| X = Y = S                              | 52.13 | 10.41 | 17.68 | 19.8 |
| N,N'-Di- <i>n</i> -propylthioharnstoff | 52.45 | 10.06 | 17.48 | 20.0 |
| X = S, Y = O                           | 58.22 | 11.57 | 19.72 |      |
| N,N'-Di-n-propylharnstoff              | 58.29 | 11.18 | 19.43 |      |

J. Thermal Anal. 18, 1980

beendet ist, tritt häufig noch eine kleinere endotherme Zwischenstufe (II in Tab. 1, Abb. 2) auf, die sich aus dem Verdampfen der Verbindung RNCY und des Amins erklärt. Der thermische Abbau ist in allen Fällen beendet, wenn der gesamte Harnstoff quantitativ verdampft ist. Für den technisch interessanten Prozeß der Harn- bzw. Thioharnstoffbildung während der ersten Abbaustufe



Abb. 3. IR-Spektren: 1 Rückstand nach der ersten Abbaustufe von  $(n-C_3H_7NH_3)$   $(n-C_3H_7NHCOS)$ ; 2 N,N'-Di-*n*-propylharnstoff



Abb. 4. IR-Spektren: 1 Rückstand nach der ersten Abbaustufe von  $(n-C_3H_7NH_3)$   $(n-C_3H_7NHCS_2)$ ; 2 N,N'-Di-*n*-propylthioharnstoff

J. Thermal Anal. 18, 1980.

wurde nach der Methode von Horowitz und Metzger [8, 9] die Aktivierungsenergie für einige Verbindungen berechnet (Tab. 3).

Die thermische Zersetzung der Kalium-N-alkylmonothiocarbamate verläuft im wesentlichen analog der Alkylammonium-N-alkylthiocarbamate. Es wer-

## Tabelle 3

Aktivierungsenergien für die erste Abbaustufe der Verbindungen (RNH<sub>3</sub>)(RHNCXY)

| Verbindung                      | Aktivierungsenergie<br>kJ · mol-1 |
|---------------------------------|-----------------------------------|
| X = Y = S                       |                                   |
| $R = n - C_3 H_7$               | +127.9                            |
| $n-C_4H_9$                      | +183.2                            |
| X = S, Y = O                    |                                   |
| $R = n - C_3 H_7$               | +100.4                            |
| i-C <sub>3</sub> H <sub>7</sub> | + 79.2                            |
| n-CAH9                          | +108.8                            |
| ŕ-Ċ,H                           | +116.5                            |
| $c - C_6 H_{11}$                | + 125.9                           |
|                                 |                                   |



Abb. 5. TG-, DTG- und DTA-Kurven von K(n-C<sub>4</sub>H<sub>9</sub>NHCOS)

J. Thermal Anal. 18, 1980

den zwei Abbaustufen beobachtet, die aber weniger scharf getrennt sind und meistens ineinander übergehen (Abb. 5, Tab. 4). Während der ersten exothermen Stufe wird Harnstoff, COS und Kaliumsulfid gebildet:

Tabelle 4

TG- und DTG-Daten der Verbindungen K(RHNCOS) (in Luft)

| Verbindung                               | ∆T, °Cª   | T <sub>max</sub> , °C <sup>b</sup> | ∆m, % <sup>c</sup> |  |  |
|------------------------------------------|-----------|------------------------------------|--------------------|--|--|
|                                          |           | I                                  |                    |  |  |
| $R = CH_3$                               | 50-142    | 125                                | 16.2               |  |  |
| $C_2 H_5$                                | 150-210   | 198°                               | 4.9                |  |  |
| $n-C_3H_7$                               | 180-220   | 195                                | 6.7                |  |  |
| $i-C_3H_7$                               | 120-180   | 175                                | 7.5                |  |  |
| $n-C_4H_9$                               | 170-210   | 195                                | 5.9                |  |  |
| i-C <sub>4</sub> H <sub>9</sub>          | 130-210   | 195°                               | 14.4               |  |  |
| <i>c</i> -C <sub>6</sub> H <sub>11</sub> | 50-136    | 120                                | 9.8                |  |  |
|                                          | II        |                                    |                    |  |  |
| $R = CH_{2}$                             | 142-275   | 210°, 250                          | 22.1               |  |  |
| С,Н,                                     | 210 - 280 | 255                                | 36.3               |  |  |
| $n-C_3H_7$                               | 220-290   | 242°, 260                          | 37.2               |  |  |
| $i-C_{3}H_{7}$                           | 180-260   | 225                                | 35.4               |  |  |
| n-C <sub>4</sub> H <sub>9</sub>          | 210-300   | 245°, 270                          | 43.9               |  |  |
| i-C <sub>4</sub> H <sub>9</sub>          | 210-285   | 240°, 265                          | 34.1               |  |  |
| c-C <sub>6</sub> H <sub>11</sub>         | 135-290   | 165, 210 <sup>e</sup> ,            | 45.1               |  |  |
|                                          |           | 265                                |                    |  |  |
|                                          |           | Rückstand, %                       |                    |  |  |
|                                          | aus TG    |                                    | theor.d            |  |  |
| $R = CH_3$                               | 65.0      |                                    | 67.42              |  |  |
| $C_2H_5$                                 | 60.8      |                                    | 60.83              |  |  |
| n-C <sub>3</sub> H <sub>7</sub>          | 55.4      | li<br>I                            | 55.40              |  |  |
| i-C <sub>3</sub> H7                      | 57.1      |                                    | 55.40              |  |  |
| n-C <sub>4</sub> H <sub>9</sub>          | 51.0      |                                    | 50.87              |  |  |
| i-C <sub>4</sub> H <sub>9</sub>          | 51.9      |                                    | 50.87              |  |  |
| <i>с</i> -С <sub>6</sub> Н <sub>11</sub> | 44.6      |                                    | 44.23              |  |  |

<sup>a</sup> Temp.-Intervall des Masseverlustes, <sup>b</sup> Temp. des DTG-Maximums, <sup>c</sup> Masseverlust, <sup>d</sup> auf  $K_2SO_4$  bezogen, <sup>e</sup> Die DTG-Kurve setzt sich aus mehreren Schultern und Maxima zusammen, die nicht exakt separierbar sind.

Daneben treten geringe Spuren von Amin und  $H_2S$  auf, die eventuell aus im Prozeß gebildeten Alkylammonium-N-alkylmonothiocarbamaten stammen können. Die angedeutete erste Abbaustufe erreicht nicht die Werte, die für den Masseverlust nach Gl. (4) zu erwarten sind. Die Ursache dürfte in der noch nicht abgeschlossenen Zersetzung, in der aber bereits einsetzenden Verdampfung des Harnstoffs und der beginnenden Oxydation des Kaliumsulfids zum Kaliumsulfat zu suchen



Abb. 6. IR-Spektren: 1 Rückstand nach der ersten Abbaustufe von  $K(n-C_4H_9NHCOS)$ ; 2  $K_2SO_4$ 

sein. Das IR-Spektrum des Rückstandes nach dieser Stufe zeigt typische Amid-Banden des Harnstoffs aber auch bereits Sulfatbanden (Abb. 6). In der zweiten, sich sofort anschließenden endothermen Stufe werden diese Prozesse beschleunigt. Als einziger Rückstand des gesamten Thermoabbaus verbleibt Kaliumsulfat. Die Summe der Masseverluste der ersten und zweiten Stufe entspricht exakt diesem Ergebnis (vgl. Tab. 4). Die thermische Zersetzung ist bei allen Verbindungen zwischen 270 und 300° abgeschlossen. Das stimmt im wesentlichen mit den Beobachtungen bei den Alkylammonium-N-alkylthiocarbamaten überein, denn hier wie dort werden im letzten Schritt die Harnstoffe verdampft. Oberhalb 300° folgen einige weniger gut deutbare thermische Effekte, die sicherlich auf Sinterund Umwandlungsprozesse des Kaliumsulfats zurückzuführen sind.

## Literatur

- 1. A. KLEMENC, Z. Anorg. Allgem. Chem., 191 (1930) 246; Z. Elektrochem. Angew. Physik. Chem., 36 (1930) 799; DRP 537 765, 12. 11. 1931.
- 2. G. J. M. VAN DER KERK, H. G. J. OVERMARS und G. M. VAN DER WANT, Rec. Trav. Chim., Pays-Bas, 74 (1955) 1301.

J. Thermal Anal. 18, 1980

- 3. R. A. FRANZ, USP 2 681 930, 22. 6. 1954.
- 4. E. Glanzstoff-AG, BRD-AS 2 015 010, 25. 11. 1971.
- 5. M. MORTAG, Dissertation, Mühlhausen 1979.
- 6. W. MÜLLER-LITZ und D. THOMZIK, J. Prakt. Chem., 319 (1977) 677.
- 7. W. MÜLLER-LITZ und D. THOMZIK, Z. Chem., (in Vorbereitung).
- 8. H. H. HOROWITZ und G. METZGER, Anal. Chem., 35 (1963) 1464.
- 9. P. M. MADHUSUDANAN, K. K. MOHAMMED YUSUFF und C. G. RAMACHANDRAN NAIR, J. Thermal. Anal., 8 (1975) 31.

RÉSUMÉ – On a étudié le comportement thermique des N-alcoyl-thiocarbamates d'ammonium et de potassium de composition (RNH<sub>3</sub>) (RHNCXY), avec X = Y = S ou X = S et Y = O;  $R = n-C_3H_7$ ,  $i-C_3H_7$ ,  $n-C_4H_9$ ,  $i-C_4H_9$ ,  $c-C_6H_{11}$  ainsi que des composés K(RHNCOS) avec  $R = CH_3$ ,  $C_2H_5$ ,  $n-C_3H_7$ ,  $i-C_3H_7$ ,  $n-C_4H_9$ ,  $i-C_4H_9$ ,  $c-C_6H_{11}$ . Les mécanismes de décomposition montrent un caractère similaire pour tous les composés. Au cours de la thermolyse il se forme des dialcoylcarbamides symétriques ou des thiocarbamides ainsi que des amines,  $CS_2$  (ou COS) et H<sub>2</sub>S. Alors que les alcoylthiocarbamates d'ammonium se décomposent sans résidu, les monothiocarbamates de potassium donnent du sulfate de potassium comme résidu. On a calculé les énergies d'activation pour la réaction de formation de la carbamide ou de la thiocarbamide pendant la première étape de la décomposition des alcoylthiocarbamates d'ammonium.

ZUSAMMENFASSUNG – Es wurde das thermische Verhalten von Alkylammonium- und Kalium-N-alkylthiocarbamaten der Zusammensetzung (RNH<sub>3</sub>) (RHNCXY) mit X = Y = S oder X = S und Y = 0;  $R = n \cdot C_3 H_7$ ,  $i \cdot C_3 H_7$ ,  $n \cdot C_4 H_9$ ,  $i \cdot C_4 H_9$ ,  $c \cdot C_6 H_{11}$  bzw. K(RHNCOS) mit  $R = CH_3$ ,  $C_2 H_5$ ,  $n \cdot C_3 H_7$ ,  $i \cdot C_3 H_7$ ,  $n \cdot C_4 H_9$ ,  $i \cdot C_4 H_9$ ,  $c \cdot C_6 H_{11}$  untersucht. Die Zersetzungsmechanismen zeigen bei allen untersuchten Verbindungen einen ähnlichen Charakter. Im Verlaufe der Thermolyse entstehen symmetrische Dialkylharn- bzw. -thioharnstoffe sowie Amine,  $CS_2$  (bzw. COS) und  $H_2S$ . Während sich die Alkylammoniumthiocarbamate ohne Rückstand zersetzen, verbleibt bei den Kaliummonothiocarbamaten Kaliumsulfat als Rückstand. Für den Prozeß der Harn- bzw. Thioharnstoffbildung während der ersten Abbaustufe der Alkylammoniumthiocarbamate wurden die Aktivierungsenergien berechnet.

Резюме — Исследовано термическое поведение солей N-алкалитиокарбаматов алкалиммония и калия общей формулы (RNH<sub>3</sub>) ((RHNCXY), где X = .Y = S или X = S и Y = O;  $R = H - C_3H_7$ , изо- $C_3H_7$ ,  $H - C_4H_9$ , изо- $C_4H_9$ , цикло- $C_6H_{11}$  и K(RHNCOS) с  $R = CH_3$ ,  $C_2H_5$ ,  $H - C_3H_7$ , изо- $C_3H_7$ ,  $H - C_4H_9$ , изо- $C_4H_9$  и цикло- $C_6H_{11}$  Для всех изученных соединений установлен подобный механизм разложения. Во время термолиза получаются как симметричные диалкилпроизводные мочевины и тиомочевины так и амины,  $CS_2$  (соответственно COS) и  $H_2S$ . В то время как алкиламмониевые соли монотиокарбаматов разлагаются без какоголибо остатка, монотиокарбаматы калия образуют в качестве остатка сульфат калия. В процессс образования мочевины и тиомочевины на первой стадии разложения, были вычислены энергии активации для некоторых соединений.